This past week I attended a conference of the ESMTB and the SMB in Nottingham. My accomodation was in a hall of residence on the campus and my plan was to take a tram from the train station. When I arrived it turned out that the trams were not running. I did not find out the exact reason but it seemed that it was a problem which would not be solved quickly. Instead of finding out what bus I should take and where I should take it from I checked out the possibility of walking. As it turned out it was neither unreasonably far nor complicated. Thus, following my vocation as pedestrian, I walked there.

Among the plenary talks at the conference was one by Hisashi Ohtsuki on the evolution of social norms. Although I am a great believer in the application of mathematics to many real world problems I do become a bit sceptical when the area of application goes in the direction of sociology or psychology. Accordingly I went to the talk with rather negative expectations but I was pleasantly surprised. The speaker explained how he has been able to apply evolutionary game theory to obtain insights into the evolution of cooperation in human societies under the influence of indirect reciprocity. This means that instead of the simple direct pattern ‘A helps B and thus motivates B to help A’ we have ‘C sees A helping B and hence decides to help A’ and variations on that pattern. The central idea of the work is to compare many different strategies in the context of a mathematical model and thus obtain ideas about what are the important mechanisms at work. My impression was that this is a case where mathematics has generated helpful ideas in understanding the phenomenon and that there remain a lot of interesting things to be done in that direction. It also made me reflect on my own personal strategies when interacting with other people. Apart from the interesting content the talk was also made more interesting by the speaker’s entertaining accounts of experiments which have been done to compare with the results of the modelling. During the talk the speaker mentioned self-referentially that the fact of his standing in front of us giving the talk was an example of the process of the formation of a reputation being described in the talk. As far as I am concerned he succeeded in creating a positive reputation both for himself and for his field.

Apart from this the other plenary talk which I found most interesting was by Johan van de Koppel. He was talking about pattern formation in ecology and, in particular, about his own work on pattern formation in mussel beds. A talk which I liked much less was that of Adelia Sequeira and it is perhaps interesting to ask why. She was talking about modelling of atherosclerosis. She made the valid point near the beginning of her lecture that while heart disease is a health problem of comparable importance to cancer in the developed world the latter theme was represented much more strongly than the former at the conference. For me cancer is simply much more interesting than heart disease and this point of view is maybe more widespread. What could be the reason? One possibility is that the study of cancer involves many more conceptual aspects than that of heart disease and that this is attractive for mathematicians. Another could be that I am a lot more afraid of being diagnosed with cancer some day than of being diagnosed with heart disease although the latter may be no less probable and not less deadly if it happens. To come back to the talk I found that the material was too abundant and too technical and that many ideas were used without really being introduced. The consequence of these factors was that I lost interest and had difficulty not falling asleep.

In the case of the parallel talks there were seventeen sessions in parallel and I generally decided to go to whole sessions rather than trying to go to individual talks. I will make some remarks about some of the things I heard there. I found the first session I went to, on tumour-immune dynamics, rather disappointing but the last talk in the session, by Shalla Hanson was a notable exception. The subject was CAR T-cells and what mathematical modelling might contribute to improving therapy. I found both the content and the presentation excellent. The presentation packed in a lot of material but rather than being overwhelmed I found myself waiting eagerly for what would come next. During the talk I thought of a couple of questions which I might ask at the end but they were answered in due course during the lecture. It is a quality I admire in a speaker to be able to anticipate the questions which the audience may ask and answer them. I see this less as a matter of understanding the psychology of the audience (which can sometimes be important) and rather of really having got to the heart of the subject being described. There was a session on mathematical pharmacology which I found interesting, in particular the talks of Tom Snowden on systems pharmacology and that of Wilhelm Huisinga on multidrug therapies for HIV. In a session on mathematical and systems immunology Grant Lythe discussed the fascinating question of how to estimate the number of T cell clones in the body and what mathematics can contribute to this beyond just analysing the data statistically. I enjoyed the session on virus dynamics, particularly a talk by Harel Dahari on hepatitis C. In particular he told a story in which he was involved in curing one exceptional HCV patient with a one-off therapy using a substance called silibinin and real-time mathematical modelling.

I myself gave a talk about dinosaurs. Since this is work which is at a relatively early stage I will leave describing more details of it in this blog to a later date.