Since my last post on this subject a few things have changed. In Germany 53% of people are fully vaccinated against COVID-19, which is good news. We are now in a situation where in this country any adult who wants the vaccination can get it. Of course this percentage is still a lot lower than what is desirable and the number of people being vaccinated per day has dropped to less than half what it was in mid June. I find it sad, and at the same time difficult to understand, that there are so many people who are not motivated enough to go out and get the vaccination.
Yesterday my wife and I got our second vaccination. In the meantime the relevant authority (STIKO) has recommended that those vaccinated once with the product of AstraZeneca should get an mRNA vaccine the second time. The fact that we waited the rather long time suggested to get our second injection meant that the new recommendation had already come out and we were able to get the vaccine of Biontech the second time around. There have not been many studies of the combination vaccination but as far as I have seen those that there are gave very positive results. So we are happy that it turned out this way. This time the arm where I got the injection was sensitive to pressure during the night but this effect was almost gone by this morning. The only other side effect I noticed was an increased production of endorphins. In other words, I was very happy to have reached this point although I know that it takes a couple of weeks before the maximal protection is there.
Every second year there is an event in Mainz devoted to the popularization of science called the Wissenschaftsmarkt. It has been taking place for the last twenty years. Normally it is in the centre of town but due to the pandemic it will be largely digital this year. This year it is on 11th and 12th September and has the title ‘Mensch und Gesundheit’ [rough translation: human beings and their health]. I will contribute a video with the title ‘Gegen COVID-19 mit Mathematik’ [against COVID-19 with mathematics]. The aim of this video is to explain to non-scientists the importance of mathematics in fighting infectious diseases. I talk about what mathematical models can contribute in this domain but also, which is just as important, about what they cannot do. If the public is to trust statements by scientists it is important to take measures against creating false expectations. I do not go into too much detail about COVID-19 itself since at the moment there is too little information available and too much public controversy. Instead I concentrate on an example from long ago where it is easier to see clearly. It also happens to be the example where the basic reproductive number was discovered. This is the work of Ronald Ross on the control of malaria. Ross was the one who demonstrated that malaria is transmitted by mosquito bites and he was rewarded for that discovery with a Nobel Prize in 1902. After that he studied ways of controlling the disease. This was for instance important in the context of the construction of the Panama Canal. There the first attempt failed because so many workers died of infectious diseases, mainly malaria and yellow fever, both transmitted by mosquitos. The question came up, whether killing a certain percentage of mosquitos could lead to a long-term elimination of malaria or whether the disease would simply come back. Ross, a man of many talents, set up a simple mathematical model and used it to show that elimination is possible and was even able to estimate the percentage necessary. This provided him with a powerful argument which he could use against the many people who were sceptical about the idea.