The story I tell in this post is based on what I heard a long time ago in a talk by Jonathan Sherratt. References to the original work by Sherratt and his collaborators are Proc. R. Soc. Lond. B269, 327 (more biological) and SIAM J. Appl. Math. 63, 1520 (more mathematical). There are some things I say in the following which I did not find in these sources and so they are based on my memories of that talk and on things which I wrote down for my own reference at intermediate times. If this has introduced errors they will only concern details and not the basic story. The subject is a topic in population biology and how it relates to certain properties of reaction-diffusion equations.

In the north of England there is an area called the Kielder Forest with a lake in the middle and the region around the lake is inhabited by a population of the field vole . It is well known that populations of voles undergo large fluctuations in time. What is less known is what the spatial dependence is like. There are two alternative scenarios. In the first the population density of voles oscillates in a way which is uniform in space. In the second it is a travelling wave of the form . In that case the population at a fixed point of space oscillates in time but the phase of the oscillations is different at different spatial points. In general there is relatively little observational data on this type of thing. The voles in the Kielder forest are an exception to this since in that case a dedicated observer collected data which provides information on both the temporal and spatial variation of the population density. This data is the basis for the modelling which I will now describe.

The main predators of the voles are weasels . It is possible to set up a model where the unknowns are the populations of voles and weasels. Their interaction is modelled in a simple way common in predator-prey models. Their spatial motion is described by a diffusion term. In this way a system of reaction-diffusion equations is obtained. These are parabolic equations and to the time evolution is non-local in space. The unknowns are defined on a region with boundary which is the complement of a lake. Because of this we need not only initial values to determine a solution but also boundary conditions. How should they be chosen? In the area around the lake there live certain birds of prey, kestrels. They hunt voles from the air. In most of the area being considered there is very thick vegetation and the voles can easily hide from the kestrels. Thus the direct influence of the kestrels on the vole population is negligible and the kestrels to not need to be included in the reaction-diffusion system. They do, however, have a striking indirect effect. On the edge of the lake there is a narrow strip with little vegetation and any vole which ventures into that area is in great danger of being caught by a kestrel. This means that the kestrels essentially enforce the vanishing of the population density of voles at the edge of the lake. In other words they impose a homogeneous Dirichlet boundary condition on one of the unknowns at the boundary. Note that this is incompatible with spatially uniform oscillations. On the boundary oscillations are ruled out by the Dirichlet condition. When the PDE are solved numerically what is seen that the shore of the lake generates a train of travelling waves which propagate away from it. This can also be understood theoretically, as explained in the papers quoted above.