My first virtual conference (SMB 2020)

At the moment I am attending the annual conference of the Society for Mathematical Biology, which is taking place online. This is my first experience of this kind of format. The conference has many more participants than in any previous year, more than 1700. It takes place in a virtual building which is generated by the program Sococo. I find this environment quite disorienting and a bit stressful. This reaction probably has to do with the facts that I am no longer so young and that I have always tried to avoid social media as much as possible. I am sure that younger generations (and members of older generations with an enthusiasm for new technical developments) have far fewer problems getting used to it. In advance I was a bit worried about setting up the necessary computer requirements to be able to give my talk or even to go to others. In the end it worked out and my talk, given via Zoom, went smoothly. I got some good feedback, I am already convinced that it was worth joining this meeting and I may be less sceptical about joining others of this type in the future. There have been technical hitches. For instance the start of one big talk was delayed by about 20 minutes for a reason of this kind. Nevertheless, many things have gone well. Of course it is much preferable to meet people personally but when that is not possible virtual meetings with old friends are also pleasant.

This meeting has been organized around the subgroups of the society. I am a member of the subgroups for immunology and oncology. In fact my talk got scheduled in the group for mathematical modelling. My greatest allegiance is to the immunology subgroup and so I was happy to see that it was represented so strongly at this conference. It has seven sessions of lectures, made up of 28 talks. If I should choose my favourite from those talks in this section I have heard so far (it is not finished yet) then I pick the talk of Ruy Ribeiro on CD8 cells in HIV infection. I did feel I was missing some necessary background but I nevertheless found the talk useful in introducing me to important ideas which were new to me. The immunology subgroup have managed to get a very prominent speaker for their keynote talk, David Ho. I wrote about his work and its relation to mathematics in one of my first ever posts on this blog, way back in 2008. I am looking forward to hearing his talk later today (which will be on COVID-19). I will now mention some of my other personal highlights from the conference so far. I noticed on the program that Stas Shvartsman was giving a talk. His work has made a positive impression on me in the past and I did have a little e-mail contact with him. On the other hand I never met him personally and I had never heard a talk by him. This was my chance and I went in with high expectations. They were not disappointed. He talked about developmental defects arising from mutations in a single gene. In particular he concentrated on mutations in the Raf-MEK-ERK MAPK cascade. I was familiar with the role of mutations in this cascade in cancer but I had never heard about this other role. Stas described experiments in Drosophila where one base in MEK is mutated. This produces flies with a particular small change in the pattern of the veins in their wings. Interestingly, this does not occur in all flies with the mutation but only in 30% of them (I hope I am remembering the right number). Another talk yesterday which I appreciated was that by Robert Insall, who was talking about aspects of chemotaxis. He started with the phenomenon of the spread of melanoma. Melanoma cells do have a very strong tendency to spread in space and the question is what controls that. Is it chemotaxis along a chemical gradient?He showed pictures of melanoma cells moving fast up a chemical gradient. Then he showed a similar picture showing them moving just as fast without the chemical gradient. So what is going on? This kind of experiment starts with cells concentrated on one side of a region and a spatially homogeneous distribution of a relevant substance. The cells consume this substance, create their own gradient and then undergo chemotaxis along it. The speaker explained how there are many instances of chemotaxis in biology which can only be explained by a self-created gradient and not be a pre-existing one. He also made some interesting remarks about how mathematical modelling can lead to insights in biology which would not be possible with the usual verbal approaches of the biologists.

I also want to mention an interesting conversation I had in the poster session. The poster concerned was that of Daniel Koch. The theme of his work (which has already been published in a paper in J. Theor. Biol.) is that the formation of oligomers of proteins (or their posttranslationally modified variants) can lead to interesting dynamics. At first sight this may sound too simple to be interesting but in fact in mathematics it is often the careful consideration of apparently simple situations which leads to fundamental progress. I imagine that this principle also applies to other disciplines (such as biology) but it is perhaps strongest in mathematics. In any case, I am strongly motivated to study this work carefully. The only question in when it will be, given the many other directions I want to pursue.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.


%d bloggers like this: