This is a belated report on a conference in Oberwolfach I attended a couple of weeks ago. The title includes two elements. The first held no suprises for me but the second was rather different from what I had expected. My expectation was that it would be about the evolution of populations of organisms. In fact it was rather focussed on models related to genetics, in other words with the question of how certain genetic traits spread through a population.
A talk I found very interesting was by Sebastian Walcher. I already wrote briefly about a talk of his in Copenhagen in a previous post but this time I understood a lot more. The question he was concerned with is how to find interesting small parameters in dynamical systems which allow the application of geometric singular perturbation theory. In GSPT the system written in the slow time (with the smallness parameter included as a variable) contains a whole manifold of steady states, the critical manifold. The most straightforward theory is obtained when the eigenvalues of the linearization of the system transverse to the critical manifold lie away from the imaginary axis. This corresponds to the situation of a transversely hyperbolic manifold of steady states. The first idea of Walcher’s talk is that whenever we have a transversely hyperbolic manifold of steady states in a dynamical system this is an opportunity for identifying a small parameter. This may not sound very useful at first sight because it would seem reasonable that generic dynamical systems would never contain manifolds of steady states of dimension greater than zero. There is a reason why this observation is misleading for systems arising from reaction networks. In these systems the state space is defined by positivity conditions on the concentrations and there are also certain parameters (such as reaction constants and total amounts) which are required to be positive. To have a name let us call the region defined by these positivity conditions the conventional region of the spaces of states and parameters. In the conventional region manifolds of steady states are not to be expected. On the other hand it frequently happens that they arise when we go to the boundary of that region. A familiar example is the passage to the Michaelis-Menten limit in the system describing a reaction catalysed by an enzyme. This takes us from the extended mass action kinetics for substrate, free enzyme and substrate-enzyme complex to Michaelis-Menten kinetics for the substrate alone. Roughly speaking it is the limit where the amount of the enzyme is very small compared to the amount of the substrate. I often wondered whether there could not be a kind of ‘anti-Michaelis-Menten’ limit where the amount of enzyme is very large compared to the amount of the substrate. I asked Walcher whether he knew how to do this and how it fitted into his general scheme. He gave me a positive answer to this question and some references and I must look into this in detail when I get time. The reason for being interested in this is that if we can obtain suitable information about a limiting case on the boundary it may be possible obtain information on the part of the conventional region where a certain parameter is small but non-zero.
There was one talk which did have a connection to population biology in way closer to what I had expected. It happens all the time that ecosystems are damaged by exotic species imported, deliberately or by accident, from other parts of the world. There are also well-known stories of the type that to try to control exotic species number one exotic species number two is introduced and is itself very harmful. It is nice to hear an example where this kind of introduction of an exotic species was very successful. It is the case of the cassava plant which was introduced from South America to Africa and became a staple food there. Then an insect from South America (species number one) called the mealy bug was introduced accidentally and caused enormous damage. Finally an ecologist called Hans Herren introduced a parasitic wasp (species number two) from South America, restoring the food supply and saving numerous lives (often the number 20 million is quoted). More details of this story can be found here.
I want to mention one statement made in the talk of Gheorghe Craciun in Oberwolfach which I found intriguing. I might have heard this before but it did not stick in my mind properly. The statement is that the set of dynamical systems which possess a complex balanced steady state is a variety of codimension , where
is the deficiency. There seemed to be some belief in the audience that this variety is actually a smooth manifold. On one afternoon we had something similar to the breakout sessions in Banff. I suggested the topic for one of these, which was Lyapunov functions. The idea was to compare classes of Lyapunov functions which people working on different classes of dynamical systems knew. This certainly did not lead to any breakthrough but I think it did lead to a useful exchange of information. I documented the discussion for my own use and I think I could profit by following some of the leads there.
To finish I want to mention a claim made by Ankit Gupta in his talk. It did not sound very plausible to me but I expect that it at least contains a grain of truth. He said that these days more papers are published on than on all of mathematics.
Leave a Reply