In a previous post I mentioned the book by Andrew Brown whose title I have used here. I came across it in a second hand bookshop in Berkeley when I was spending time at MSRI in 2009. I read it with pleasure then and now I have read it again. It contains the story of how the worm Caenorhabditis elegans became an important model organism. This came about because Sydney Brenner deliberately searched for an organism with favourable properties and promoted it very effectively once he had found it. It is transparent so that it is possible to see what is going on inside it and it is easy to keep in the lab and reproduces fast enough in order to allow genetic research to be done rapidly. The organism sought was supposed to have a suitable sexual system. C. elegans is normally hermaphrodite but does also have males and so it is acceptable from that point of view. One further important fact about C. elegans is that it has a nervous system, albeit a relatively simple one. (More precisely, it has two nervous systems but I have not looked into the details of that issue.) Brenner was looking to understand how genetics determines behaviour and C. elegans gave him an opportunity to make an attack on this problem in two steps. First understand how to get from genes to neurons and then understand how to get from neurons to behaviour. C. elegans has a total of 302 neurons. It has 959 cells in total, not including eggs and sperm. Among the remarkable things known about the worm are the complete developmental history of each of its cells and the wiring diagram of its neurons. There are about 6400 synapses but the exact number, unlike the number of cells or neurons, is dependent on the individual. For orientation note that C. elegans is a eukaryotic organism (in contrast to phages or E. coli) which is multicellular (in contrast to Saccharomyces cerevisiae) and it is an animal (in contrast to Arabidopsis thaliana). Otherwise, among the class of model organisms, it is as simple and fast reproducing as possible. In particular it is simpler than Drosophila, which was traditionally the favourite multicellular model organism of the geneticists.
In this blog I have previously mentioned Sydney Brenner and expressed my admiration for him. I have twice met him personally when he was giving talks in Berlin and I have also watched a number of videos of him which are available on the web and read various texts he has written. In this way I have experienced a little of the magnetism which allowed him to inspire gifted and risk-taking young scientists to work on the worm. Brenner spent 20 years at the Laboratory of Molecular Biology in Cambridge, a large part of it as director of that organization. In the pioneering days of molecular biology the lab was producing Nobel prizes in series. He had to wait until 2002 for his own Nobel prize (for physiology or medicine), shared with John Sulston and Robert Horvitz. In his Nobel speech Brenner said that he felt there was a fourth prizewinner, C. elegans, which, however, did not get a share of the money. My other favourite quote from that speech is his description of the (then) present state of molecular biology, ‘drowning in a sea of data, starving for knowledge’. Since then that problem has only got worse.
Now I will collect some ‘firsts’ associated with C. elegans. It was the first multicellular organism to have its whole genome sequenced, in 1998. This can also be seen as the point of departure for the human genome project. Here the worm people overtook the drosophilists and the Drosophila genome was only finished in 2000. Sulston played a central role in the public project to sequence the human genome and the struggle with the commercial project of Craig Venter. It was only the link between the worm genome project and the human one which allowed enough money to be raised to finish the worm sequence. According to the book Sulston was more interested in the worm project since he wanted to properly finish what he had started. Martin Chalfie, coming from the worm community introduced GFP (green fluorescent protein) into molecular biology. He first expressed it in E. coli and C. elegans. He got a Nobel prize for that in 2008. microRNA (miRNA) was first found in C. elegans. It is the basis of RNA interference (RNAi), also first found in C. elegans. This earned a Nobel prize in 2006. The genetics of the process of apoptosis (programmed cell death) was understood by studying C. elegans. When Sulston was investigated the cell lineage he saw that certain cells had to die as part of the developmental process. Exactly 131 cells die during this process.
To conclude I mention a couple of features of C. elegans going beyond the time covered by the book. I asked myself what we can learn about the immune system from C. elegans. Presumably every living organism needs an immune system to survive in a hostile environment. The adaptive immune system in the form known in humans only exists in vertebrates and hence, in particular, not in the worm. Some related comments can be found here. It seems that C. elegans has no adaptive immune system at all but it does have innate immunity. It has cells called coelomocytes which have at least some resemblance to immune cells. It has six of them in total. Compare this with more than immune cells per litre in our blood. C. elegans eats bacteria. These days the human gut flora is a fashionable topic. A couple of weeks ago I heard a talk by Giulia Enders, the author of the book ‘Darm mit Charme’ which sold a million copies in 2014. I had bought and read the book and found it interesting although I was not really enthusiastic about it. Now TV advertising includes products aimed at the gut flora of cats. So what about C. elegans? Does it have an interesting gut flora? The answer seems to be yes. See for instance the 2013 article ‘Worms need microbes too’ in EMBO Mol. Med. 5, 1300.
Leave a Reply