Calvin on the Calvin cycle

In a previous post I mentioned Calvin’s Nobel lecture. Now I read it again and since I had learned a lot of things in the meantime I could profit from it in new ways. The subject of the lecture is the way in which Calvin and his collaborators discovered the mechanisms of the dark reactions of photosythesis. This involved years of experiments which I am not qualified to discuss. What I will do here is to describe some of the major conceptual components of this work. The first step was to discover which chemical substances are involved in the process. To make this a well-defined question it is necessary to fix a boundary between those substances to be considered and others. As their name suggests the dark reactions can take place in the dark and to start with the process was studied in the dark. It seems, however, that this did not lead to very satisfactory results and this led to a change of strategy. The dark reactions also take place in the light and the idea was to look at a steady state situation where photosynthesis is taking place in the presence of light. The dark reactions incorporate carbon dioxide into carbohydrates and the aim was to find the mechanism by which this occurs. At the end of the Second World War, when this work was done, carbon 14 had just become much more easily available due to the existence of nuclear reactors. Calvin also mentions that when doing difficult separations of compounds in his work on photosynthesis he used things he had learned when separating plutonium during the war. Given a steady state situation with ordinary carbon dioxide the radioactive form of the gas containing carbon 14 could be introduced. The radioactive carbon atoms became incorporated into some of the organic compounds in the plants used. (The principal subject of the experiment was the green alga Chlorella.) In fact the radioactive carbon atoms turned up in too many compounds – the boundary had been fixed too widely. This was improved on by looking what happened on sufficiently short time scales after the radioactive gas had been added, of the order of a few seconds. After this time the process was stopped, leading to a snapshot of the chemical concentrations. This meant that the labelled carbon had not had time to propagate too far through the system and was only found in a relatively small number of compounds. The compounds were separated by two-dimensional chromatography and those which were radioactive were located by the black spots they caused on photographic film. Calvin remarks ironically that the apparatus they were using did not label the spots with the names of the compounds giving rise to them. It was thus necessary to extract those compounds and analyse them by all sorts of techniques which I know very little about. It took about ten years. In any case, the endpoint of this process was the first major conceptual step: a set of relevant compounds had been identified. These are the carbon compounds which are involved in the reactions leading from the point where carbon dioxide enters the system and before too much of the carbon has been transferred to other systems connected to the Calvin cycle. While reading the text of the lecture I also had a modern picture of the reaction network in front of me and this was useful for understanding the significance of the elements of the story being told. From the point of view of the mathematician this step corresponds to determining the nodes of the reaction network. It remains to find out which compounds react with which others, with which stoichiometry.

In looking for the reactions one useful source of information is the following. The carbon atoms in a given substance involved in the cycle are not equivalent to each other. By suitable experiments it can be decided which are the first carbon atoms to become radioactive. For instance, a compound produced in relatively large amounts right at the beginning of the process is phosphoglyceric acid (PGA) and it is found that the carbon in the carboxyl group is the one which becomes radioactive first. The other two carbons become radioactive at a common later time. This type of information provides suggestions for possible reaction mechanisms. Another type of input is obtained by simply counting carbon atoms in potential reactions. For instance, if the three-carbon compound PGA is to be produced from a precursor by the addition of carbon dioxide then the simple arthmetic relation 3=1+2 indicates that there might be a precursor molecule with two carbons. However this molecule was never found and it turns out that the relevant arithmetic is 2\times 3=1+5. The reaction produces two molecules of PGA from a precursor with five carbon atoms, ribulose bisphosphate (RuBP). Combining the information about the order in which the carbon atoms were incorporated with the arithmetic considerations allowed a large part of the network to be reconstructed. Nevertheless the nature of one key step, that in which carbon dioxide is incorporated into PGA remained unclear. Further progress required a different type of experiment.

The measurements used up to now are essentially measurements of concentrations at one time point (or very few time points). The last major step was taken using measurements of the dynamics. Here the concentrations of selected substances are determined at sufficiently many time points so as to get a picture of the time evolution of concentrations is certain circumstances. The idea is to first take measurements of PGA and RuBP in conditions of constant light. These concentrations are essentially time-independent. Then the light is switched off. It is seen that the concentration of PGA increases rapidly (it more than doubles within a minute) while that of RuBP rapidly decreases on the same time scale. This gives evidence that at steady state RuBP is being converted to PGA. This completes the picture of the reaction network. Further confirmation that the picture is correct is obtained by experiments where the amount of carbon dioxide available is suddenly reduced and the resulting transients in various concentrations monitored.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s


%d bloggers like this: