Proofs of dynamical properties of the MAPK cascade

The MAP kinase cascade, which I mentioned in a previous post, is a biochemical network which has been subject to a lot of theoretical and experimental study. Although a number of results about mathematical models for this network have been proved, many widely accepted results are based on numerical and/or heuristic approaches. Together with Juliette Hell we set out to extend the coverage of rigorous results in this area. Our first results on this can be found in a paper we just posted on q-bio.

The system of equations which is fundamental for this work is that of Huang and Ferrell discussed in my previous post on the subject. I call it the MM-MA system (for Michaelis-Menten via mass action). When this system can be reduced to a smaller system by means of a quasistationary approximation the result will be called the MM system (for Michaelis-Menten) (cf. this post). With a suitable formulation the MM system is a singular limit of the MM-MA system. The MAPK cascade consists of three coupled layers. The first main result of our paper concerns the dual futile cycle, which can be thought of as the second layer of the cascade in isolation (cf. this post). We proved that the MM system for the dual futile cycle exhibits a generic cusp bifurcation and hence that for suitable values of the parameters there exist two different stable stationary solutions (bistability). Using the fact that this system is a singular limit of the system arising from the MM-MA description of the same biological system we then used geometric singular perturbation theory (cf. this post) to conclude that the MM-MA system also shows bistability.

The second main result concerns the system obtained by truncating that of Huang-Ferrell by keeping only the first two layers. It is subtle to find a useful quasistationary approximation for this system and we were put on the right track by a paper of Ventura et. al. (PLoS Comp. Biol. 4(3):e1000041). This allowed us to obtained an MM system which is a limit of the MM-MA system in a way which allows geometric singular perturbation theory to be applied. This leads to the following relative statement: if the MM system for the truncated MAPK cascade has a hyperbolic periodic solution then the same is true for the MM-MA system. To get an absolute statement it remains to prove the existence of periodic solutions of the MM system, which in this case is of dimension three. That there are solutions of this kind is indicated by numerical work of Ventura et. al.

Advertisements

One Response to “Proofs of dynamical properties of the MAPK cascade”

  1. Conference on mathematical analysis of biological interaction networks at BIRS | Hydrobates Says:

    […] number of phosphate groups changes by two in one encounter between a substrate and an enzyme. It is known that the double phosphorylation system with distributive and sequential phosphorylation admits […]

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s


%d bloggers like this: